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Abstract

Modular forms, moduli spaces and elliptic curves are all fundamental concepts in modern

abstract algebra. This paper aims to find the moduli space of complex elliptic curves and

to study its properties. In particular, we show that the moduli space we find allows for

defining modular forms in a natural and useful way. This is accomplished by using the fun-

damental domain for a certain matrix group as a parameterization for the elliptic curves.

Along the way, we study the j-invariant, which classifies isomorphism classes of elliptic

curves. The objects discussed are all subject to active research and have applications in

areas from topology and geometry to applied number theory such as cryptography.
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1 Introduction

Modular forms and elliptic curves are widely studied concepts in modern mathematics

since they exhibit remarkable properties, and since there is a profound connection between

them. This link between elliptic curves and modular forms was first proven by Andrew

Wiles; although he only demonstrated it for a significant special case, it was sufficient to

imply the negative resolution of the long-open Fermat’s Last Theorem, which states that

the equation xn + yn = zn has no solution in positive integers for n ≥ 3.

Formally, modular forms are a kind of complex-valued functions which are smooth.

This means that their complex derivative exists everywhere that they are defined. They

also have a value at infinity, which means that the limit of the function as its argument

tends to infinity exists. Finally, they are periodic, and one can manipulate them and their

arguments in certain ways without changing their values.

The set of solutions to an equation in two variables can be described by a so-called

graph, a set of points in the plane. Higher-dimensional graphs exist for equations using

more variables; for example, a plane can be seen as a graph in three-dimensional space.

Elliptic curves are the graphs of certain polynomial equations of degree 3, on which we

can define addition of two points so that we may carry out basic arithmetic on the curve

itself. As it turns out, finding the sum of two points is rather easy - it may therefore come

as a surprise that instead finding what number of times to add a point to itself in order

to obtain a given other point is considered a very difficult problem to solve. This forms

the basis of some of the most efficient and secure currently used cryptography methods.

Moduli spaces are important tools in solving classification problems and are subject to

extensive study in abstract algebra and algebraic geometry. Their points represent math-

ematical objects, or oftentimes rather families of them that we consider to have identical

properties. In such a space we may add coordinates, thus parameterizing the objects.

Furthermore, additional structure such as topologies or operations may be embedded into

the space, allowing for a more comprehensive study of its points.

Finding a moduli space of elliptic curves with a suitable topology would allow us to

study in what way the properties of elliptic curves change when one curve is continuously

Page 1(23)



Nordström, D 2 PRELIMINARIES

changed into another. We specifically consider elliptic curves over complex numbers, as

they can be analyzed deeply and behave well under many of the operations we are inter-

ested in. In this paper, we find one potential moduli space of complex elliptic curves and

show that it naturally allows for the definition of modular forms. We also show that mod-

ular forms do indeed exist through giving explicit construction. Finally, we demonstrate

the power of modular forms by discussing a brief proof of Jacobi’s Four Square Theorem.

The rest of this article is structured as follows. In section 2, we present some highly

general concepts that are foundational to the topics we discuss. In section 3, we consider

the underlying theory behind the objects we present, analyze and refer to throughout the

article. In section 4 we investigate how to define a moduli space of elliptic curves, and we

also visualize it for the sake of intuition. In section 5, we move on to studying the properties

of modular forms and, more importantly, how they relate to each other. This theory is

employed in section 6 to recover a quick proof of the Four-Square Theorem. Finally, we

mention some final remarks and possible directions for future research in section 7.

2 Preliminaries

This section gives some general concepts that will be of great importance to the following

sections. Note that this is only an outline of the theory that this article will use. Section 3

gives some more context, but the full details are still omitted for the sake of brevity. Serge

Lang treats the topic comprehensively in [1].

A group is a set S along with a binary operation + : S2 → S satisfying three conditions:

1. (Identity Element) There exists an element e ∈ S such that for any a ∈ S, a + e =

e+ a = a.

2. (Inverse Element) For any a ∈ S, there exists a−1 ∈ S such that a+a−1 = a−1+a = e.

3. (Associativity) For any a, b, c ∈ S we have (a+ b) + c = a+ (b+ c).

If the binary operation also satisfies a+ b = b+ a for all a, b ∈ S, the group is said to be

commutative or abelian. A trivial example of an abelian group is the integers along with

addition; an example of a non-abelian group is given by matrix multiplication discussed

in section 3.5.
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A field is a set S along with two binary operations, here denoted by · and +, satisfying

conditions:

1. The + and · operations, respectively, are commutative and associative.

2. The + and · operations have identity elements denoted by 0 and 1, respectively.

3. (Additive Inverse) For any element a ∈ S, there exists an element (−a) ∈ S such that

a+ (−a) = (−a) + a = 0.

4. (Multiplicative Inverse) For any element a ∈ S\{0}, there exists an element a−1 ∈ S

such that a · a−1 = a−1 · a = 1.

5. (Distributivity of multiplication over addition) For any a, b, c ∈ S we have a · (b+ c) =

(a · b) + (a · c).

A trivial example of a field is the set of real numbers with regular multiplication and

addition; indeed, one may view groups and fields as generalizations of arithmetic on the

real numbers, in order to allow similar expressions and calculations using the elements of

other sets.

A K-vector space is a set S along with a field K such that

1. Addition of elements in S is an abelian group.

2. For any a, b ∈ K and v ∈ S, we have a · (b · v) = (a · b) · v.

3. If 1 is the multiplicative identity in K, then 1 · v = v ∀v ∈ S.

4. For any a, b ∈ K and v ∈ S, we have (a+ b) · v = a · v + b · v.

5. For any a ∈ K and u,v ∈ S, we have a · (u + v) = a · u + a · v.

An isomorphism f between two sets A and B equipped with some structure is a structure-

preserving invertible mapping. This essentially means that A and B are isomorphic if and

only if their respective structures are identical. An automorphism is an isomorphism from

some set to itself; it can be seen as a form of symmetry of the set (and indeed, symmetries

of geometric objects are automorphisms).

A lattice L = ⟨z1, z2⟩ is the set

{(az1 + bz2)|a, b ∈ Z}
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for two complex numbers z1, z2 which are linearly independent over R. We say that z1

and z2 generate L.

A homeomorphism is a continuous bijective map with a continuous inverse. We view two

homeomorphic objects as essentially the same, at least topologically speaking.

3 Theory

This section treats some of the more specific theory used throughout the article.

3.1 Moduli Space

A moduli space is a mathematical space whose points represent objects of a given kind.

Such a space usually comes equipped with some topology, which gives a notion of when two

objects of the space are similar. As classes of objects sometimes have natural isomorphisms

(an example would be similarity for triangles), defining an equivalence relation on the

space to identify certain objects makes sense. Put simply, we take objects to be distinct

iff (if and only if) the isomorphisms cannot map them to each other. Topologically, the

properties of the resulting quotient space are interesting since they are invariant under

certain maps between mathematical objects.

To demonstrate, a somewhat trivial moduli space would be the moduli space of proper

labeled triangles up to similarity. We may view such a triangle (up to similarity) as a

triple (α, β, γ) of positive numbers representing the three angles of the triangle at vertices

A,B,C. Thus, a moduli space of proper labeled triangles up to similarity is the set

{(α, β, γ) ∈ R3|α, β, γ > 0, α + β + γ = π}. This space can naturally be equipped with

the usual topology of R3, the Euclidean metric (or usual absolute value); we thus have a

notion of two triangles being close together.

The above discussion lacks rigor - indeed, several definitions of a moduli space exist. The

parametrization displayed in this paper will be referred to as a moduli space, although it

technically fails the usual definitions due to the many automorphisms of complex elliptic

curves. This will be of little importance to us, since endowing the set of our objects with
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a tractable topological structure will more than suffice for our purposes of studying them.

3.2 Elliptic Curves

An elliptic curve E over a field K of characteristic not 2 or 3 is the set of solutions to an

equation

y2 = x3 + Ax+B (1)

where A,B ∈ K. The equation (1) is called the Weierstrass form of the elliptic curve and

is the form we will study in this article as it allows us to view E as a plane curve.

Figure 1: Two examples of elliptic curves, taken here to be defined and visualized over R
for the sake of intuition (the closed loop is a part of the curve to the right).

The elliptic curve E also has a point at infinity O. It is a point of the line at infinity, which

we in turn add so that we can say that there is precisely one line through any two points,

and that two lines intersect in precisely one point. (Two curves intersect at a point if the

point is a solution to the equations describing both curves.) This implies that an elliptic

curve is defined over the projective plane, and lets us use a theorem due to Bézout which

states that any line will intersect E precisely 3 times, counted with multiplicity (more

generally, any two projective curves of degree m and n will intersect mn times, counting

multiplicity). This will be important when we define addition on E.
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A singularity of E is a point P ∈ E such that any line intersecting E at P intersects

E with multiplicity greater than 1. We require the discriminant

∆ = 4A3 + 27B2 (2)

to be nonzero, so that E has no singularities; the importance of this is shown in 3.3.

Figure 2: Two examples of elliptic curves with singularities. To the left, the singularity is
the point where the elliptic curve self-intersects. To the right, the singularity is the sharp
leftward protrusion.

3.3 Addition on Elliptic Curves

A group can be defined on E as follows: for distinct points P and Q, let R be the third

intersection of the line PQ with E. If P = Q, let the line PQ be the tangent to E at

P (the tangent exists as E is smooth; this follows from the condition ∆ ̸= 0). We let

P +Q be the third point where the line OR intersects E. This is indeed a group: O is the

identity, the third intersection between the line OP and E is −P , and it can be shown

that associativity holds [2]. Furthermore, it is clear that P +Q = Q+ P , so this group is

also abelian.
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P

R

P+Q

Q

Figure 3: Addition of points P and Q on E. When defined over R, an elliptic curve
described by a Weierstrass equation will intersect the line at infinity at the point O where
two vertical lines intersect. Therefore, the line through R and O will be the vertical line
through R. Similarly, the point P +Q is the reflection of R over the x-axis; since elliptic
curves disregard the sign of y, they are always symmetric across the x-axis.

3.4 The j-Invariant

The j-invariant of the elliptic curve E is defined as

j =
4A3

∆
. (3)

There exists an isomorphism between two elliptic curves precisely when they have the

same j-invariant [2], which will be important in constructing the moduli space of elliptic

curves.

3.5 Modular Forms

We first define the group SL2(Z),which is the set of matrices

SL2(Z) =


a b

c d

 : (a, b, c, d) ∈ Z4, ad− bc = 1

 (4)

equipped with regular matrix multiplication. Note that this is a noncommutative group.

The group GL2(Z) which appears later is similarly defined; the only difference is that we
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let ad− bc = ±1. Let H = {a ∈ C : Im a > 0} be the upper half of the complex plane, not

including the reals. A modular form of weight 2k for SL2(Z) is a holomorphic function

f : H → C such that f(γz) = (cz + d)2kf(z) for all γ ∈ SL2(Z), where we define γz as

az+b
cz+d

. Such a function may be written as a function of q = e2πiz where |q| < 1 [3]. We

require f(q) to have a value when q = 0; this is equivalent to the existence of the limit of

f(z) when q → ∞. We call this value the value at infinity of f .

A cusp form is a modular form that vanishes at infinity.

As we will show under section 5, the set M2k of all modular forms for SL2(Z) of weight

2k can be interpreted as a C-vector space of finite dimension.

3.6 Eisenstein Series

The Eisenstein series of weight 2k is defined as

G2k(z) =
∑

(m,n)∈Z\(0,0)

1

(mz + n)2k
. (5)

It turns out that the Eisenstein series are not only modular forms, but basis elements for

all modular forms for SL2(Z).

3.7 Weierstrass ℘ function

The Weierstrass ℘ function for a lattice L is defined as

℘(z) =
1

z2
+

∑
λ∈L\{0}

Å
1

(z − λ)2
− 1

λ2

ã
.

It is meromorphic; it is holomorphic away from poles of order 2 at every point of the

lattice L. It is also doubly periodic; its two periods are the generators of L. [2]

4 Finding the Moduli Space

This section will present the main result of this article: a moduli space of complex elliptic

curves up to group isomorphism.

Page 8(23)



Nordström, D 4 FINDING THE MODULI SPACE

4.1 The j-Invariant and a Trivial Moduli Space

An isomorphism class of elliptic curves (the set of all elliptic curves whose addition group

is isomorphic to the addition group on a specified elliptic curve) is uniquely determined by

its j-invariant. Conversely, the j-invariant determines a single isomorphism class of curves.

Therefore, the j-invariant will be a strong tool in finding a moduli space. Indeed, it is

easy to show that the j-invariant can assume any complex value; let A = 1 so that the

j-invariant becomes 4
4+B

. This can assume any value but 0; to get 0, let A = 0, B ̸= 0.

Therefore, a trivial moduli space of complex elliptic curves up to isomorphism is C.

This is indeed a parameterization of elliptic curves, and it does give us a concept of

when two isomorphism classes of elliptic curves are close together. However, it does not

permit much additional study. Our approach will therefore instead make use of the con-

nection between lattices and elliptic curves to impose an equivalence relation on the upper

half plane H, identifying points z with their orbits under the SL2(Z) action. In particular,

we will look at the fundamental domain. While the space thus created is homeomorphic

to the trivial moduli space, it simultaneously serves as a parametrization of elliptic curves

and the natural domain of modular forms for SL2(Z).

4.2 Lattices and Homotheties

The Weierstrass ℘ function gives an isomorphism of groups between lattices and elliptic

curves; for any lattice L, it satisfies the differential equation

℘′(z)2 = 4℘(z)3 − 60G4(L)℘(z)− 140G6(L). (6)

It can be shown that taking y = ℘′, x = ℘, this is a nonsingular elliptic curve. Conversely,

every elliptic curve arises from some lattice. [2] The above equation can easily be put in

Weierstrass form with A = −15G4(L), B = −35G6(L). Due to this isomorphism, we may

identify the set of nonsingular elliptic curves with the set of lattices over C. Two lattices

⟨s, t⟩ and ⟨u, v⟩ define the same isomorphism class of elliptic curves iff they are homoth-
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etic, that is, ⟨s, t⟩ = λ⟨u, v⟩ for some λ ∈ C \ {0}. This follows simply from extending the

definition of the Eisenstein series to the sum
∑

γ∈L\{0} γ
−2k for a lattice L. If L1 = λL2,

then G4(L1) = λ−4G4(L2) and G6(L1) = λ−6G6(L2). Letting this into the j-invariant, the

powers of λ cancel. We omit the converse for brevity - the full details can be found in

[2]. Thus, we may restrict ourselves to working with lattices ⟨1, z⟩, and the homothety

condition becomes ⟨1, z⟩ = λ⟨1, z′⟩ for some λ ∈ C \ {0}. The following lemma elaborates

on this.

Lemma. Lattices ⟨1, z⟩ and ⟨1, z′⟩ are homothetic iff z′ = az+b
cz+d

with ad− bc = ±1.

Proof. If they are homothetic, then ⟨1, z⟩ = λ⟨1, z′⟩ for some λ ∈ C \ {0}. Thus, λ = cz+d

and λz′ = az + b for integers a, b, c, d, so

λz′
λ

 =

a b

c d

z
1

 .

Note that this matrix is invertible; we could just as well write 1 and z as linear combi-

nations of λ and λz since the lattices are the same. It is also of integer determinant, just

like its inverse. Since det(AB) = det(A) det(B), both determinants are ±1. This gives

ad− bc = ±1. Taking λz′

λ
= az+b

cz+d
= z′ yields one direction of the equivalence.

Conversely, if z′ = az+b
cz+d

with ad− bc = ±1, then ⟨1, z′⟩ = ⟨1, az+b
cz+d

⟩. Multiplying by cz + d

gives a homothety to the lattice ⟨cz+d, az+b⟩. Taking a(cz+d)−c(az+b) = ad−bc = 1

and −b(cz + d) + d(az + b) = (ad − bc)z = z gives that this is the lattice ⟨1, z⟩, so that

⟨1, z′⟩ is indeed homothetic to ⟨1, z⟩.

All lattices ⟨1, z⟩ are parameterized by C, but we have the equivalence relation z ∼ az+b
cz+d

;

more formally, our space of lattices is (C\R)/GL2(Z) (two points of C\R are equivalent

iff one can be taken to the other by a GL2(Z) matrix). It immediately follows that this is

homeomorphic to H/SL2(Z).

Lemma. (C\R)/GL2(Z) is homeomorphic to H/SL2(Z).

Proof. The matrix taking z to −z is in GL2(Z). We know that every homothety is given
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by a GL2(Z) matrix. It remains to show that any homothety given by GL2(Z) action is

also given by SL2(Z). We have ⟨1, z⟩ = ⟨cz + d, az + b⟩ for ad − bc = −1 and ⟨1, z⟩ =

⟨cz + d, a′z + b′⟩ for a′d − b′c = 1; dividing by cz + d in both equations shows that the

matrices a′ b′

c d

 and

a b

c d


give the the same homothety.

The next lemma verifies our claim that this approach produces a space that is home-

omorphic to the trivial moduli space.

Lemma. H/SL2(Z) is homeomorphic to C.

Proof. The function g sending points of H/SL2(Z) to the j-invariants of their correspond-

ing elliptic curves is bijective by the first lemma of this section. Using eq. (6) to obtain

the elliptic curve corresponding to the lattice ⟨1, z⟩, then taking it into Weierstrass form

and writing the j-invariant gives that g is explicitly given by

g : z 7→ 20G3
4(z)

20G3
4(z) + 49G2

6(z)
(7)

where G4 and G6 are the Eisenstein series of weights 4 and 6, respectively. Note that

the denominator is nonzero as it is the discriminant of a nonsingular elliptic curve. Fur-

thermore, Eisenstein series are modular forms (which will be discussed in section 5), thus

holomorphic on C. Therefore g is holomorphic. Now use Proposition 1.7.4 from [4]. It

states that if f : X → Y is a surjective continuous map and we define an equivalence

relation on X by saying u ∼ v iff f(u) = f(v), then the induced map f : X/ ∼ → Y is

a homeomorphism exactly when f sends saturated open sets q−1(U) to open sets. It also

states that f sends saturated open sets to open sets if f is an open map.

Together with the Open Mapping Theorem from complex analysis which gives that g is

indeed an open map, this yields that the induced map is a homeomorphism.
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4.3 Visualizing the Moduli Space

We now know that a moduli space of complex elliptic curves is H/SL2(Z). We would

however like a more concise description of the quotient. As a starting point for this, we

find a generating set of SL2(Z).

4.3.1 Generators of SL2(Z)

Lemma. A generating set of SL2(Z) is given by the two matrices

S =

1 1

0 1

 and T =

 0 1

−1 0

 .

Proof. We first summarize the action of S and T .

S :

a b

c d

 7→

a+ c b+ d

c d

 (8)

T :

a b

c d

 7→

 c d

−a −b

 (9)

The action of the respective inverses is clear. Our proof will proceed by starting with any

matrix A in SL2(Z), and then showing that repeated application of S and T (or their

inverses) reduces A to the identity matrix. We will work with the absolute values of a and

c, using the following algorithm (and assuming all absolute values are greater than 1):

1. If |a| > |c|: Add/subtract c from a so that we have a → a′ with |a′| < |c|.

2. If |a| < |c|: Apply T and then use step 1.

If |a| or |b| go below 2, then one of the absolute values has to be 1. As above, use this to

achieve (|a|, |c|) = (1, 0). We have now reduced the matrix A to a matrix A′ of the form

A′ :

±1 b

0 ±1

 (10)
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where a has the same sign as d so the determinant equals 1. This reduces readily to the

identity (or its negative) under repeated application of S, whence we may easily reduce

to S and T . It is clear that |a|+ |c| is strictly decreasing under iterations of the algorithm,

and therefore it must terminate. Inverting the sequence of matrices used, we have shown

that any matrix of SL2(Z) can be generated from S and T .

4.3.2 Fundamental Domain of SL2(Z)

Having summarized the action of SL2(Z) on H, we can now see precisely what SL2(Z)

does to a point z in H: its action is generated by z 7→ −1
z

and z 7→ z + 1, along with

the respective inverses. We shall now find a subset F of H such that any point of H

can be sent into F under SL2(Z) action, and that no two points in F can be sent to

each other; in other words, F is a fundamental domain of SL2(Z), and contains precisely

one representative of every isomorphism class of complex elliptic curves (since it contains

precisely one representative of each class of lattices up to homothety).

Lemma. A fundamental domain for SL2(Z) is given by

F = {z ∈ H|Re(z) ∈ [−1/2, 1/2) & |z| ≥ 1 with |z| > 1 if Re(z) > 1}.

Figure 4: The set F , which is a fundamental domain for SL2(Z).

Proof. We first prove that the orbit of any point intersects F . Since we may translate
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by 1 along the real axis, all orbits have points with real parts in the desired interval.

We must now prove that the points with absolute value less than 1 can be made to have

absolute value at least 1, while maintaining a real part within the desired interval. For

each 0 < r < 1, define hr(z) as the function whose domain is the semicircle of radius r

in the upper half plane, and which lets z 7→ −1
z

before adjusting the real part to lie in

[−1/2, 1/2). Note that if z is in the semicircle of radius r, letting z go to hr(z) multiplies

the imaginary part of z by at least 1
r
, which is greater than 1. Therefore, suppose that

there exists a point z0 which stays in a semicircle of radius r0 < 1 under applications of

h. It then holds for every n that Imhn
r0
(z) ≥ 1/(rn0 ) Im z. Since r0 < 1, the RHS can grow

arbitrarily large, which contradicts the assumption that the absolute value of hn
r0
(z) is

upper bounded by r0. This shows that for any semicircle of radius r < 1, we can force

all points of H to have a real part in the desired interval while having an absolute value

greater than r; thus, application of S and T can force all points of H to have an absolute

value of at least 1, and a real part in [−1/2, 1/2). As to why the absolute value should be

greater than 1 if the real part is positive, we can mirror the points of positive real part

and absolute value of 1 across the y-axis by applying T . This shows that a point from

every orbit is in F . For the sake of brevity, the proof of the converse is taken from [3].

Thus, the fundamental domain F is a moduli space of complex elliptic curves. The reason

why this particular visualization of the space is so interesting is that it is also the natural

home of modular forms for SL2(Z). We shall now study these modular forms closer.

5 Modular Forms

We gave the definition and properties of modular forms in section 3.5. It is not trivial that

such functions exist. We therefore give Eisenstein series as a demonstration; as stated in

section 4.2, they are modular forms. We will now show this.

Lemma. Eisenstein series of weight 2k ≥ 4 are modular forms for SL2Z.

Proof. We shall first show that Eisenstein series respect the SL2Z action; proving that

the required properties hold under the application of the generating elements is sufficient.
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Thus, what we need to check is f(z+1) = z and f
(
−1

z

)
= z2kf(z). The former condition

is obvious. For the latter, write

G2k

Å−1

z

ã
=

∑
(m,n)∈Z2\(0,0)

1

(n− m
z
)2k

=
∑

(m,n)∈Z2\(0,0)

z2k

(nz −m)2k
= z2kG2k(z). (11)

As to being holomorphic, it suffices to show that the summands of the Eisenstein series

converge uniformly on compact subsets K of H. We may thus assume Im z ≥ m0 > 0 for

some fixed m0. Consider the central parallelogram P1 about 0, being the set {1,−1,±z, 1±

z,−1 ± z}. Our main idea is that the absolute values of the elements of P1 are lower

bounded by m0 if m0 ≤ 1, and their contributions to the sum are thus upper bounded

by 1
m2k

0
. Further define Pn = {{p ± 1 ± z} : p ∈ Pn−1} recursively, where we additionally

require Pn to be disjoint from all earlier Pi.

Figure 5: The central parallelogram P1 for a lattice L, given by the eight encircled lattice
points. The points marked in black form P2.

The parallelogram Pn contains 8n points whose absolute values are lower bounded by

nm0; the contribution to the sum from Pn is therefore upper bounded by 8
m2k

0 n2k−1 . The

Eisenstein series can be rewritten as

G2k(z) =
∑
n≥0

∑
γn∈Pn

1

γ2k
n

. (12)
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What we want to show is uniform convergence. We therefore prove that

∑
n≥M

∑
γn∈Pn

1

|γ2k
n |

(13)

becomes arbitrarily small with large enough M independent of z ∈ K. By the preceding

discussion, we have ∑
n≥M

∑
γn∈Pn

1

|γ2k
n |

≤ 8

m2k
0

∑
n≥M

1

n2k−1
(14)

where 8
m2k

0
is constant, and it is well known that the sum is arbitrarily small for large

enough M since 2k − 1 ≥ 3 (for example, one could overestimate the sum using a simple

integral). This shows that G2k(z) converges uniformly absolutely on K and is therefore

holomorphic there, since all the summands are. Finally, we find the value at infinity.

Whenever m is not 0, the absolute value of the denominator of the summand goes to

infinity and we can therefore disregard that summand. Therefore we only consider the

summands where m = 0; this becomes

2
∑

n∈N\(0,0)

1

n2k
= 2ζ(2k). (15)

We have thus shown that the Eisenstein series are modular forms.

5.1 ∆ and All Other Modular Forms

When viewed as a C-vector space, the set Mk of modular forms of weight 2k has a finite

basis. The full proof of this makes use of tedious contour integrals which we omit. We

instead provide a sketch, where the full details can be found in [3].

Lemma. The C-vector space of modular forms of weight 2k has a basis of the monomials

Ga
2G

b
3 where a, b ≥ 0 and 2a+ 3b = k.

Sketch of proof. We define the space M0
k of cusp forms of weight 2k, which is the kernel

of the linear map f → f(∞). Thus, dim(Mk) ≤ dim(M0
k ) + 1. Since G2k is nonzero at

infinity, we have Mk = M0
k

⊕
CG2k. Multiplication by ∆ gives an isomorphism between
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Mk−6 and M0
k since ∆ is a cusp form of weight 12, and it is nonzero everywhere else. The

fact that ∆ is nonzero follows from the aforementioned contour integrals - it also follows

from them that there are no modular forms of nonpositive weights. This completes the

proof: the dimension of M1, M2, M3, M4 and M5 is 1, and multiplication by ∆ inductively

gives the dimension of all other Mi. The dimension of Mk can now be computed for k ≥ 0

as 
dim Mk = [k/6] if k ≡ 1 mod 6

dim Mk = [k/6] + 1 if k ̸≡ 1 mod 6
(16)

where [x] denotes the integral part of x. We now know the dimension of Mk, and it is

the same as the number of monomials as stated in the preceding lemma. It remains to

show that the monomials are linearly independent over C. Assume that Ga
2G

b
3 = λGa0

2 Gb0
3 ,

where λ ̸= 0 and a0 < a. Then Ga−a0
2 Gb−b0

3 = λ when G3 ̸= 0. This is impossible since

G2 and G3 have different zeroes, so the monomials are linearly independent. Therefore,

they constitute a basis for Mk.

Remark. With x2 = G2 and y3 = G3, the above lemma shows that the set of all modular

forms for SL2Z is isomorphic to the set of homogeneous polynomials in x2 and y3.

6 Modular Forms & Four-Square Theorem

It is well-known that every non-negative integer can be written as a sum of four squares

of integers. The exact number of quadruples (a, b, c, d) so that a2 + b2 + c2 + d2 = n for

any non-negative integer n is also known. It is a result originally due to Jacobi; a revised

proof can be found in [5]. We will show that this result is easy to derive from the theory

of modular forms.

In order to do this, we define the θ series as

θ(z, 4) =
∑
n≥0

K4(n)q
n, K4(n) =

∣∣{(a, b, c, d) ∈ Z4|a2 + b2 + c2 + d2 = n}
∣∣ (17)
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where q = e2iπz. We then show that it is indeed a modular form for Γ0(4), a group defined

as

Γ0(4) =


a b

c d

 ∈ SL2(Z)|c ≡ 0 mod 4

 , (18)

and can thus be expressed as a linear combination of the basis elements of Γ0(4). Finally,

we take the q-series of the basis elements and solve a linear equation system to obtain the

coefficients of the θ series, thus answering the question posed.

6.1 Modular Forms for Γ0(Z)

As with the group SL2(Z), we would like to concisely summarize the group action by

finding a set of generators for Γ0(4).

Lemma. The three matrices

S =

1 1

0 1

 , U =

1 0

4 1

 and V =

−1 0

0 −1


generate Γ0(4).

Proof. We again summarize the action of the matrices.

S :

a b

c d

 7→

a+ c b+ d

c d

 , U :

a b

c d

 7→

 a b

4a+ c 4b+ d

 and V :

a b

c d

 7→

−a −b

−c −d



Our proof proceeds similarly to how we found the generators of SL2(Z). Given a matrix

we construct another algorithm, once again given that all absolute values are at least 2.

1. If |a| > |c|: subtract/add to a some multiples of c until 1
2
|c| ≥ |a|.

2. If 1
2
|c| < |a| < |c|: proceed as in step 1 so that 1

2
|c| > |a|.

3. If 1
2
|c| > |a|: Add/subtract 4a so that |c| becomes less than |a|.

4. If any absolute value becomes 1 or less: c is 0, which gives |a| = 1. Applying V if

necessary gives (a, c) = (1, 0). Application of S then yields the identity matrix.
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We can now proceed to show that the K series respects this group action.

Lemma. The θ series respects the Γ0(4) group action.

Proof. Once again it suffices to show that the θ series respects the action of the generator

elements. As we have defined θ in the variable q, θ(z+1) = θ(z) holds. In order to show

that θ respects U , note that K(n, a+ b) =
∑

i+j=nK(i, a)K(j, b). Note also that

θ(n, a)θ(n, b) =
∑
n≥0

∑
i+j=n

K(i, a)K(j, b)qn =
∑
n≥0

K(n, a+ b)qn = θ(n, a+ b). (19)

We want to show θ (z, 4) (4z + 1)2 = θ
Ä

z
4z+1

, 4
ä
. Taking the fourth root, this is equivalent

to θ(z)
√
4z + 1 = θ

Ä
z

4z+1

ä
by the above. Using the identity θ

(−1
4z
, 1
)
= θ(z, 1)

√
−2iz [6]

we get θ
Ä

z
4z+1

ä
= θ

(
1

4+ 1
z

)
= θ

Å
−1

4(−1− 1
4z )

ã
= θ

(
−1− 1

4z

)»
−2i

(
−1− 1

4z

)
= θ

(−1
4z

)»
2i+ i

2z

which using the identity again is θ(z)
»
2i+ i

2z

√
−2iz = θ(z)

√
4z + 1. Taking the fourth

powers of both sides yields that θ does indeed respect the Γ0(4) action.

We are now in a position to prove that θ(n, 4) is a modular form.

Lemma. θ(n, 4) is a modular form for Γ0(4).

Proof. By definition, the value of θ at infinity is K(0, 4) = 1. It remains to show that θ is

holomorphic. We do this by proving that the q-series converges uniformly to θ given any

positive lower bound on the imaginary part of the domain of θ.

First, note that all K(n, 4) ≤ (2n+ 1)4. Let y0 > 0 be our lower bound on the domain of

θ. Rewrite the θ series as ∑
n∈Z4

|n|≥0

e2πi|n|
2z. (20)

We will show that the tail of the series

∑
n∈Z4

|n|≥M0

∣∣∣e2πi|n|2z∣∣∣ (21)
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is arbitrarily small for large enough M independent of z. Note that

∣∣∣e2πi|n|2z∣∣∣ = ∣∣∣e2πi|n|2a∣∣∣∣∣∣e−2π|n|2b
∣∣∣ (22)

where a and b are the real and imaginary parts of z. The first of the two factors has a

pure imaginary exponent, and its absolute value is therefore 1. The second factor has a

negative real exponent; its absolute value is largest when the expression after the negative

sign is as small as possible. The only part of the exponent that may vary is b; we therefore

have ∣∣∣e−2π|n2b|
∣∣∣ ≤ ∣∣∣e−2π|n|2y0

∣∣∣. (23)

Using this, we have

∑
n∈Z4

|n|≥M0

∣∣∣e2πi|n|2z∣∣∣ ≤ ∑
n∈Z4

|n|≥M0

e−2π|n|2y0 ≤
∑

m≥M0

(2m+ 1)4e−2πmy0 . (24)

We may assume that M0 is a square. Then, by bunching terms together and rounding

absolute values down to the nearest square, we have

∑
m≥M0

(2m+ 1)4e−2πmy0 ≤
∑

m≥
√
M0

(2m+ 1)(2(m+ 1)2 + 1)4e−2πm2y0 (25)

which we can overestimate for large enough M0 with

∑
m≥

√
M0

em−2πm2y0 ≤
∑

m≥
√
M0

e−m (26)

which becomes arbitrarily small for large enough M0, independent of the choice of z. The

fact that θ is holomorphic above any given horizontal line in H gives that θ must be

holomorphic at any point in H, thus on all of H.
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6.2 Answering the Question: Finding the Coefficients

It can be proven [6] that the C-vector space M2(Γ0(4)) of modular forms of weight 2 for

Γ0(4) has a basis

G2,2 = −π2

3

Ö
1 + 24

∞∑
n=1

Ö∑
0≤d|n
d odd

d

è
qn

è
G2,4 = −π2

Ü
1 + 8

∞∑
n=1

Ü∑
0≤d|n
4∤d

d

ê
qn

ê
.

The series θ is a linear combination of these basis elements, i.e. θ = λ1G2,2 + λ2G2,4.

Knowing that the first two coefficients of the q-expansion of θ are 1 and 8, we have the

system of linear equations 1 = −π2

3
λ1 − π2λ2

8 =−8π2λ1 − 8π2λ2

. (27)

Dividing the second equation by 8 and subtracting from the first equation yields 0 = 2π2

3
λ1

so that θ is a scalar multiple of G2,4; matching the first coefficient of both series tells us

that this scalar is − 1
π2 . Thus, the expansion of the θ series is

θ = 1 + 8
∞∑
n=1

Ü∑
0≤d|n
4∤d

d

ê
qn (28)

and the number of ways in which the positive integer n can be written as a sum of four

squares is therefore

8
∑
0≤d|n
4∤d

d, (29)

which is indeed the result of Jacobi.
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7 Concluding Remarks

In this article, we show that the set of complex elliptic curves up to group isomorphism can

be parameterized by H/SL2(Z), which is in turn homeomorphic to C. We also demonstrate

the existence of modular forms for SL2(Z), and we show that all modular forms for SL2(Z)

are homogeneous polynomials in the two first Eisenstein series. Finally, we give a proof

of the Four-Square Theorem through applying modular forms.

Several further questions arise from the results in this article. One could generalize the

four-square theorem to other numbers of squares. As seen in section 6, the coefficients of

the q-expansion of a modular form can carry much information - for example, one could

try to come up with a general expression for the coefficients of the Eisenstein series. As

we may multiply and add formal series, the coefficients of powers/products or sums of

such series could also be found. Finally, one could study the properties of modular forms

over our parameterization of isomorphism classes of complex elliptic curves, or generalize

this parameterization to elliptic curves over any field.
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