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Abstract

When two parties communicate over a noisy channel, information can get lost. One way

this can happen is that a certain amount of bits get deleted. For a message to remain

legible, both parties have to agree to certain properties. The sender cannot send two

strings with n bits that might end up becoming the same substring with n − 2 bits. In

this case, the receiver will not be able to reconstruct the message, because they might

end up with the same substring with n−2 bits twice although they mean different things.

This gives the sender a set C to choose the code words x from, where no strings share

a common substring. The upper and a lower bound for the size of C was previously

known to be 2n

n4 ≤ |C| ≤ 2n

n2 . The upper bound however is not optimal because it counts

some strings multiple times. This can be avoided by implementing a new term f which

represents the maximum amount of times that a string is counted. While this paper does

not claim to prove a lower upper bound, the new approach might turn out to be useful

in the future.
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1 Introduction

In this paper the following scenario is considered: Two parties, from now on called person

A and person B, are trying to communicate over a noisy channel in which a certain

amount of information can get lost. In particular, suppose person A wants to send a n-bit

string (x1, ..., xn) to person B, but 2 bits get deleted. This leads to person B receiving a

n− 2-bit string (y1, ..., yn−3, yn−2). Note that person B does not know the location of the

bits that get deleted. Person B wants to recover the original string.

This paper studies a given bound for the minimal amount of necessary information

needed for a message to be recoverable in spite of a one- or two-bit deletion.

1.1 Preliminaries

In this section concepts from coding theory and graph theory are introduced. A reader

interested in more detailed introduction to coding theory is referred to [1], while for the

introduction to graph theory [2] can be consulted.

1.1.1 Coding Theory

There are multiple steps involved in the communication between two parties. Person A

wants to send ` ∈ N different words to person B. Person A chooses a word m ∈M where

M is the given vocabulary that person A can access. An example for a vocabulary could

be M={“hello”, “bye”}. Now person A can send a message that either says “hello” or “bye”.

Before sending this word, person A encodes the word m into a binary string x ∈ C of

length n ∈ N where C is a set of strings with n bits. Every word gets encoded into a

unique binary string, where the number of bits n for every string remains constant. All

the encoded words are contained within the code C ⊆ {0, 1}n which is comparable to the

vocabulary M for the original message m. {0, 1}n is the set of all the binary strings of

length n. Therefore, every string x that person A sends can be described as x ∈ {0, 1}n.

The encoded message gets sent over a noisy channel by person A to person B. Due to the
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channel being noisy a loss of information on the string x occurs. This information loss

can happen in many different ways. This paper focuses on the setting where k ∈ N bits

get deleted, and the location of the deletions are unknown. Person B receives a corrupted

version of the original string y ∈ {0, 1}n−k.

The construction of optimal codes for various values of k has been an important

open question which has attracted significant research interest in the past decades. In

the single-deletion case (k = 1), an explicit construction of a code of asymptotic size

O(2n/n) by Varshamov-Tenengolts [3] was shown to be optimal by Levenshtein [4]. With

asymptotic size is meant that these bounds are only true for large values for n, which is

implied by the O. Furthermore, these codes have very efficient encoding/decoding schemes

and hence are suitable for practical applications. However, for 2 ≤ k < n/2 finding the

optimal construction remains elusive. While it is known that the optimal codes with k-

deletion and n bits have size

O(
2n

n2k
) ≤ |C| ≤ O(

2n

nk
), (1)

the question of bridging this gap between both bounds remains open even after exten-

sive effort by the research community. Recent progress has been made in construction of

explicit codes for k = 2 deletions [5], i.e. codes which have poly(n)-time encoding and de-

coding schemes, and which match the existential bound O(2n/n4) stated above. Finding

explicit codes for general values of k has been studied by Brakensiek and others [6, 7, 8, 9].

While these works construct explicit codes, they still use hashing based recursive tech-

niques and other approaches which makes the coding schemes have size asymptotically

smaller than the one given by the existential bound O(2n/n2k). The case when k is very

close to n/2 has been studied by a beautiful recent result [10] which improves on the

upper bound stated above.

This work focuses on the case k = 2 and discusses a possible approach for bridging the

gap between the upper and the lower bound stated in the previous paragraph. Therefore,
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the string that person B receives can also be described as a sub-string with y ∈ {0, 1}n−2.

Person B needs to recover the original string x from y, where these two could be very

different due to the fact that a single deletions is capable of shifting the entire string.

Note that there are strings, from now on called special strings, that are not affected by

these shifts as they either consist of only ones or only zeros. This is where so called

deletion-correction codes prove to be useful because they make it possible for person B

to recreate the original string x. This process can be seen in Figure 1.

Figure 1: Process of message transmission in coding

An example of a so called deletion-correction code is the repetition code. A repetition

code encodes m by first using the smallest number of bits to represent it as a binary

string w, and then constructs x by repeating w r times. These repetition codes are very

inefficient as the encoded message grows with a factor r. Therefore this paper looks into

more efficient methods.

1.1.2 Graph Theory

Now useful concepts in graph theory will get introduced. A graph G = (V,E) consists of a

set of vertices V and a set of edges E, where each edge e = (v, u) ∈ E has a pair of vertices

u, v ∈ V as its endpoints. Vertices that are connected through an edge are neighbours.

For a vertex v ∈ V we define the neighbourhood N(v) as the set of all neighbours of v,
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i.e. the set of all u ∈ V such that e = (u, v) ∈ E. We use dv := |N(v)| for the number of

neighbours of v, which we also call the degree of v.

Next, we define an independent set I ⊆ V as a set of vertices in which no two vertices

v, u ∈ I are neighbours of each other. An example of a graph and an independent set is

given in Figure 2. Observe that a graph can have many different independent sets.

Figure 2: The coloured nodes are an example for an independent set

1.2 Coding Theory Meets Graph Theory

Coding theory and graph theory can be combined in order to create a new deletion-

correction code that is more efficient than the repetition code that got mentioned earlier.

Each string x ∈ {0, 1}n gets assigned to a vertex v ∈ V . These vertices share an edge

e ∈ E if their respective strings share a sub-string y ∈ {0, 1}n−k. If this is the case, the

two nodes representing the strings are connected. If these connected strings x1 and x2 get

sent through the noisy channel they could end up becoming identical after the deletion

process due to the shared substring y. An independent set I ⊆ V therefore consists of

strings that are not neighbours of each-other. An example of a graph constructed as ex-

plained above can be seen in Figure 3 where n = 3 and k = 2. Furthermore, the coloured
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sequences are part of an independent set.

Figure 3: The coloured strings are the only independent set since any other node shares
an edge with every node. In this example, n = 3 and k = 2

1.2.1 Greedy Deletion-Correction

Person A and person B have to agree on an independent set. Otherwise, person B will

not be able to reconstruct the message correctly, because person B might receive the

same substring y twice although they originate from different strings x1 and x2. The code

corresponding to the largest independent set is the most effective among all 2-bit binary

deletion codes on n-bits.

Lemma 1: Given a vocabulary M that corresponds to a code C ⊆ {0, 1}n, where C is an

independent set. The set C has a maximum asymptotic size of O(2
n

n4 ) ≤ |C| ≤ O(2
n

n2 ).

Proof: This proof uses the degree of a node, where there are two values for the degree.

The maximum degree D = n4 due to there being n2 ways of deleting two bits and then

again n2 ways of inserting two bits. The minimum degree d = n2 due to there being
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certain special strings with only one way of deleting two bits but still n2 ways of inserting

two bits.

The lower bound for the size of code C can be calculated by dividing the set of all

the vertices V by the maximum degree D of the nodes, resulting in |c| ≥ 2n

n4 .

The upper bound however originates from the following approach. The size of the set

of all the vertices v ∈ V is equal to the union of the neighbourhoods N of the vertices

v ∈ C. This can be seen in equation(2).

|V | = |
⋃
v∈C

N(v)| (2)

Furthermore, it can be stated that the union of the neighbourhoods N of the vertices

v ∈ C is approximately equal to the sum of all the neighbourhoods N of the vertices

v ∈ C [5]. See equation (3).

|
⋃
v∈C

N(v)| ≈
∑
v∈C

|N(v)| (3)

The sum of all the neighbourhoods N of the vertices v ∈ C can also be calculated by

multiplying the size of the code |C| with the degree. In this case the minimum degree d

gets used due to this being the upper bound. This can be seen in equation (4).

∑
v∈C

|N(v)| = |C| · n2 (4)

By combining the equations (2), (3) and (4) the upper bound for |C| can be created,

resulting in |C| ≤ 2n

n2 .

The upper and lower bound combined result in the bound seen in equation (5) with

asymptotic growth due to these bounds only being true for large n’s.

O(
2n

n4
) ≤ |C| ≤ O(

2n

n2
) (5)
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1.2.2 Reason for Suspecting that the Upper Bound is not Optimal

As can be seen in equation(3) it gets stated that the union of the neighbourhoods N of

the vertices v ∈ C is approximately equal to the sum of all the neighbourhoods N of the

vertices v ∈ C. However, this is not true due to the fact that the neighbourhoods N of

the vertices v ∈ C are overlapping. An example for this would be the graph seen in Figure

3 where the maximum independent set consists of the strings x1 = 000 and x2 = 111.

The two nodes that represent the strings share all their neighbours, which supports the

argument of the upper bound not being optimal.

2 Method

In order to improve the given bounds, a new interpretation combining graph theory and

coding theory is proposed. This graph sections the type of neighbours into different tiers,

where the strings within the first tier only differ from the original string by one shift, the

second tier neighbours by two, the third by three, and so on. However, a neighbour can at

most only differ from the original string by four shifts (a shift occurs when a bit deletion

results in the remaining bits shifting to the left in order to fill the gap created by the

deletion) due to the fact that all four shifts can get deleted because both strings can delete

two. If this happens they share the same substring with n − 4 bits. Note that there are

approximately n first tier neighbours (because there are n− 1 different ways of deleting

one bit and therefore shifting the string by one). There are approximately n2 amount of

second tier neighbours (because there are
(
n
2

)
different ways in which two bits can get

deleted causing two shifts). For the same reasons there are approximately n3 amount of

third tier neighbours and n4 amount of fourth tier neighbours. These approximations are

asymptotically true. Furthermore, the first tier neighbours are included into the second

tier neighbours and so on. Thus meaning that the fourth tier neighbours include all the

others. A representation of this graph can be seen in Figure 4.
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2.1 Improving the Upper Bound

To improve the upper bound the previously mentioned overlaps within the neighbour-

hoods N of the nodes of the independent set v ∈ C have to be considered. These overlaps

can be taken into account by introducing a new set F , with size f = |F |. F is defined as

the maximum independent set of a neighbourhood of a node. By doing this, the amount

of nodes v ∈ C sharing a neighbour can be calculated. This new term alongside a constant

j can be inserted into equation (3) resulting in equation (6). The constant j is added due

to the fact that the equation is not optimal, but not much is known about this constant.

|
⋃
v∈C

N(v)| ≈
∑
v∈C

|N(v)| · 1
f
· j (6)

With this improved interpretation a new upper bound can be created. However, n4

is used as the degree because this will be true for most strings. Therefore the new upper

bound seen in equation (7) can be acquired.

2n

n4
≤ |C| ≤ 2n · f

n4 · j
(7)

Lemma 2: f is bounded by n4 asymptotically.

Proof: Neighbours of first and second tier will always share and edge whereas neighbours

of third and fourth tier will not necessarily. This is because neighbours of first and second

tier are separated by four shifts or less. Therefore only neighbours of third degree and

fourth tier can be a part of F which can be seen in Figure (4) as the coloured sections. As

the n3 third tier neighbours are included into the n4 fourth tier neighbours f results in

being having at most a value of n4. However, the neighbours of first and second tier should

be excluded as they all share an edge with each-other. As the n first tier neighbours are

included into the n2 second tier neighbours f = n4 − n2.
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Figure 4: The different tiers within the neighbourhood of a string where the coloured tiers
represent the neighbours that are part of the set F

3 Results and Discussion

As the previous upper bound was 2n

n2 , f needs to be below n2 in order for there to be an

improvement. For the case of the two bit deletion f proved to be greater than n2. To be

precise it resulted in being f = n4−n2 which is asymptotically equivalent to n4. This can

be seen as an upper bound for f due to the fact that neighbours of third and fourth tier

will often be connected. This upper bound is trivial because f can never be greater than

n4 as this also is the maximum degree. Another factor that limits this approach is that

it only works for regular strings that are not special strings. With a special string the

shifting effect of the deletions would be minimal because no position changes. It also does

not work because strings of third and fourth tier will also be neighbours of each-other in

many cases.

Although this paper did not manage to improve the previously set bounds it still
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managed to find a new approach. This new approach included a new interpretation of

the combination of the graph and coding theory. If the limiting factors mentioned above

could be mathematically incorporated, a better result may be achieved. Additionally, this

new way of viewing the problem might prove to be useful in the future, where a value

of f below n2 is desired. As not much is known about the constant j, new information

about this constant would improve the bounds and would also be essential for optimizing

the bounds.
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