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Abstract

Quasi-stationary distributions underlie a great number of fundamental phenomena and

accurate modeling of the ones studied in this article will positively impact fields such

as molecular biology, neuroscience, and population studies. Methods for obtaining the

density of quasi-stationary distributions belonging to a class of Ornstein-Uhlenbeck pro-

cesses on a bounded domain are outlined and evaluated in this paper. The goal is to

find approaches that both imitate the distributions closely and minimize the number

of calculations necessary, thereby making accurate approximations in higher dimensions

feasible. Existing methods for this scale very poorly into higher dimensions as the com-

putational complexity of the meshes used becomes impractical. The investigated solution

attempts to, through the use of neural networks, replace the mesh with random point sam-

pling, thereby decreasing the number of calculations needed. This problem was approached

through a physics-informed neural network where several architectures, hyper-parameters,

and algorithms were experimented with to optimize performance. The findings show that

changing the hyper-parameter betas could improve convergence five-fold and that meth-

ods like learning rate annealing are not as successful as previously thought, at least with

simpler differential equations.
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1 Introduction

Partial differential equations (PDEs) are useful instruments for modelling complex rela-

tionships with applications in nearly all scientific fields. Often, however, they are very

difficult, if not impossible, to solve analytically which leaves numerical approaches as

the only viable option [1]. One such approach is the Physics-Informed Neural Network

(PINN): a machine learning model that stands in for the solution of the PDE [2].

1.1 Notation

Let Ω ⊂ Rd denote an open, connected subset of Rd with boundary ∂Ω. Further, define

C2
0(Rd) as the set of all twice continuously differentiable functions on Rd where {x : f(x) ̸=

0} is closed and bounded. The Hessian matrix of f will be represented by ∇2f and tr[A]

will denote the trace of the matrix A. Lastly θ will be used in place of the set of network

parameters.

1.2 Artificial Neural Networks

Figure 1: The Structure of a Multilayer Feed-Forward Network [3].

Inspired by biological neural networks, an artificial neural network (ANN) is a system of

layers of nodes and connections. Typical for an ANN is having an input layer where a

value is assigned to each input node and then sent to the second, so called “hidden,” layer

where the value of the new signal is given as
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signal = b+
n∑

i=1

wixi. (1)

Here, n is the number of input nodes connected to the node in question, b is a constant

known as the bias, xi is the input signal from the ith node, and wi is the corresponding

coefficient, known as the weight, of that signal. Before this signal is passed onto the next

node, it is generally put through an activation function. This is chosen as part of the

neural network architecture and is often a non-linear function that prevents the ANN

from collapsing into a linear regression. If the activation function is omitted, the system

can be simplified to a linear sum with a bias similar to Equation (1) which limits the set of

relationships that can be approximated to the linear ones. When introducing non-linearity

into the signal, however, this simplification is no longer possible which allows the ANN

to model a greater number of systems. This process is then repeated for the remaining

hidden layers. When the output layer is reached, a final signal is generated for each output

node which serves as the ANN’s prediction. As all functions within the network can be

chosen to be differentiable, so too can the network as a whole be differentiated which has

some important consequences [4].

For the ANN to yield interesting outputs, it has to be fitted to the problem. This

is done through back-propagation followed by gradient descent [5]. Back-propagation is

where the loss function, a measure of how much the ANN’s output differs from the correct

one, is differentiated with respect to the network parameters. Then, in the optimization

phase, the parameters are shifted to progress towards the minimum of the loss function.

Repeatedly doing this across a large set of data is what adapts the weight and bias

parameters of the network to the problem in question and allows the system to make

accurate predictions on previously unseen inputs.

1.3 Physics-Informed Neural Networks

Due to the adaptability of machine learning models, almost any function can be approx-

imated with a neural network [6]. A Physics-Informed Neural Network (PINN) [2] is a

framework for approximating the solutions to PDEs with deep learning. The idea is that,
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though the underlying function is unknown, adequate information to train a model can

be extracted from the relationship between the function and its derivatives as well as

from the boundary conditions and other analytically derived properties of the solution

like probability mass. A function that fulfills these properties sufficiently closely, will also

represent the solution of the PDE [?].

For instance, if the differential operator N acts on the function f such that

Nf(x) = 0. (2)

If it is additionally known that the output of f should be zero on the boundary, one can

construct a set of loss functions

Operator loss = ∥Nf(x)∥, x ∈ Ω (3)

Boundary loss = ∥f(x)∥, x ∈ ∂Ω. (4)

The neural network can then try to minimize these losses, thereby emulating the behaviour

of the sough-after function f without having to know it explicitly as long as Nf(x) is

known.

A major advantage of the PINN over other methods, is that it does not require the

construction of a mesh which can be both difficult to design and computationally imprac-

tical for higher dimensional PDEs. Instead it can take samples from the function’s input

space in a process which requires fewer calculations [7].

1.4 Quasi-Stationary Distributions

A quasi-stationary distribution (QSD) is a property of a certain type of stochastic pro-

cess; namely one that has at least one condition, referred to as an absorbing state, that

terminates the process and is reached almost surely1. This definition makes no assertions
1The technical definition of "almost surely" permits the existence of non-conforming cases but demands

that the probability of these be 0.
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as to when the absorbing state occurs, only that it does which means that one can study

the behaviour of the process as time tends towards infinity, given that the absorbing state

has not yet occurred. Through this, a distribution describing the likelihood of the process

taking a certain range of values within the domain can be found, which is what defines a

QSD.

Figure 2: Population as a stochastic process that could be described with a QSD where
the absorbing state is population extinction.

A typical example of such a stochastic process is a population in an environment with

limited resources; there can be long periods of stability but, as there is a non-zero chance

of extinction at any given time, eventually all individuals will die off, terminating the

population process. The QSD of this process would then be the function describing the

likelihood of the population consisting of certain range of individuals.

1.5 Presentation of the SDE

The class of equations studied in this paper is the set of stochastic differential equations

(SDEs) described as

dXt = −b(Xt)dt+ dWt, (5)

where Xt ∈ Rn is a Markov process, b(x) is an arbitrary vector-valued function, and Wt is
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a stochastic process. Here, Xt is most easily conceptualized as a particle moving through

a confined space and which is terminated if it collides with the boundary of said space as

illustrated in Figure 3. The equation can then be interpreted as saying that the change

in the particle’s position is dependent on some position-specific function and the change

in some stochastic process. The sought-after function describes the QSD density of the

particle being within a given region of the domain.

Figure 3: Particles moving stochastically through a one dimensional room with absorbing
states on the room boundaries.

1.6 Aim of Study

The aim of this study is to find a general solution method for the QSDs associated with

equations on the form of Equation (5) with sufficient accuracy and with adequate speed

so that the solution can feasibly be found even for more complicated cases.

Accurate modelling of quasi-stationary distributions would contribute greatly to fields

such as population modeling [8], molecular dynamics [9], and neuroscience [10].

1.7 The Loss Function

As has been shown by Budhiraja et al. [11], the probability density solution function of

equation (5) fulfills the properties

−L∗f(x) = λf(x), x ∈ Ω (6)
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f(x) = 0, x ∈ ∂Ω (7)

where f ∈ C2
0(Rd), λ is an unknown constant that the network can optimize and L∗ is a

differential operator described as [11]:

L∗f(x) = β(x) · ∇f(x) +
1

2
tr[a(x)∇2f(x)]− c(x)f(x), (8)

with

βi(x) = −bi(x) +
d∑

j=1

(aij(x))xij
,

c(x) = −1

2

d∑
i=1

(aij(x))xixj
+

d∑
i=1

(bi(x)xi
.

For this project, bi(x) is the ith element of the arbitrary vector-valued function b(x) and

a(x) is the identity matrix. This means that Equation (8) can be simplified to

L∗f(x) = −b(x) · ∇f(x) +
1

2
tr[∇2f(x)]−

d∑
i=1

(bi(x))xi
f(x). (9)

This is very useful as (6) allows for the construction of a deterministic PDE-based loss

function involving only known terms and constants as well as optimizable parameters.

Namely,

PDE loss = ∥L∗f(x) + λf(x)∥. (10)

By training a PINN to minimize this loss, a good approximation of f can be generated.

1.8 Multi-Objective Optimization

Neural networks are effective optimizers which means that, in the instance of Equation

(10), they will converge towards the perfect solution f(x) = 0. As this isn’t a useful

result, standard practice is to introduce another loss function that punishes the ANN if,

for example, the total probability mass strays too far from one. This gives rise to another
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problem as these loss functions need to be combined into one so that gradient descent

can be performed. Typically, this is done by defining a total loss as the weighted sum of

all loss functions. Balancing these weights for optimal performance can then be done in

several ways. Manual adjustments work but are often tedious and ineffective.

An alternative method suggested by Bischof and Kraus [12] is learning rate annealing.

A loss weight wi(t) is updated every iteration by:

wi(t) = α · wi(t− 1) + (1− α) · ŵi(t) (11)

where

ŵi(t) =
max{|∇θLΩ(t)|}

|∇θLΓi
(t)|

, i ∈ {1, 2} (12)

and α ∈ [0, 1] is a constant affecting the speed of weight change, LΩ is PDE Loss, and

LΓi
∈ {Boundary Loss,Mass Loss}. This means that the weight is updated based on how

the maximum component of PDE loss gradient vector relates to the mean component

of the loss that the weight belongs to. A large such relationship implies that gradient

descent is going to disproportionately focus on decreasing the PDE loss which learning

rate annealing corrects for by increasing the weight of the loss function in question, thereby

ensuring that all losses are considered equally in gradient descent.

1.9 Fleming-Viot Simulation

An alternative method of modelling SDEs to PINNs is a so called Fleming-Viot simula-

tion. Instead of learning an analytically derived loss function, this leverages the particle-

interpretation of the quasi-stationary distribution. A number of particles is distributed

uniformly through the domain and an iterative process much like the Euler–Maruyama

step method is initiated. The new position of each particle after n iterations is given

recursively as

Xn = Xn−1 − b(Xn−1)∆t+∆Wn,
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Figure 4: A Fleming-Viot simulation of three particles that are restarted in the position
of another particle when absorbed.

where Xn is the position of a particle moving according to Equation (5) at time = n

∆Wn = Wn − Wn−1 is a normal random variable with mean 0 and variance ∆t. If a

particle reaches the boundary, it is killed and a new one is initiated in the same place as

one of the surviving ones, chosen with uniform probability among the remaining points. If

the position of all particles is recorded at each time interval, a histogram can be developed

that can then be converted into a function, for example through Gaussian Kernel density

estimation [13], which describes the probability density of the QSD [14].

1.10 Long Short-Term Memory Network

Aside from the standard feed-forward neural network (FFNN) described above, there

are many other network structures that have been effectively used to solve differential

equations numerically. One such architecture is the long short-term network (LSTM)

used by Sirignano and Spiliopoulos due to its discontinuous derivatives in certain points

which allows the network to make sharper turns [7]. This can, for instance, improve the

ANN’s ability to meet boundary conditions.

1.11 Some Interesting Hyper-Parameters

In the following section, some particularly useful hyper-parameters are defined.
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Figure 5: Effects of varyingly well-defined learning rates

Learning Rate The learning rate of an ANN is the speed with which it follows a

gradient. This means that a network with a high learning rate will adjust its parameters

more after every iteration. This, as shown by Figure 5, is a balancing act as a too high

learning rate can lead to unstable behavior and hinder convergence whereas a slow learning

rate leads to a longer training process and risks trapping the network in a sub-optimal

local minimum [15].

Learning Rate Schedulers Broadly, a learning rate scheduler is a protocol for dynam-

ically adapting the learning rate of a neural network during the training process. Most

relevant to this investigation is the reduce on plateau method wherein the learning rate

decreases if the loss function hasn’t decreased in a set number of training epochs, known

as the patience. This allows the system to train quickly in the beginning and to find

the approximate location of the global minimum and then fine-adjust when the major

improvements have been made.

Betas The used optimizer for this project is AdamW [16] which, aside from loss function,

step size, and initial parameters, takes two values: β1 and β2 [17]. The exact interpretation

of these varies depending on the problem but, in general, they can be thought of as keeping

a moving average of momentum and velocity over a number of generations determined by
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their size. A higher value corresponds to a longer moving average.

Weight Decay Weight decay is a method used to prevent the network parameters from

growing too large. This can help avoid unnecessary complexity as well as overfitting [18].

2 Method

For the experiments conducted in this investigation, the variation

dXt = −Xtdt+ dWt (13)

of equation (5) is used where Xt moves through a two-dimensional space and W is standard

Brownian motion.

2.1 The Loss Function

Three main loss functions were used to inform the PINN’s development. Namely the

eigenvalue-based PDE loss, mass loss, and boundary loss [19].

Mass loss was defined as follows:

Mass loss =
∥∥∥∥∫

Ω

f(x)dx− 1

∥∥∥∥ (14)

and used to ensure that the solution met the mass requirement for a probability density

function and the trivial solution f(x) = 0 was avoided.

Boundary loss was defined as:

Boundary loss =

∥∥∥∥∫
∂Ω

f(x)dx

∥∥∥∥ . (15)

QSDs are conditioned on the process terminating at the border meaning that the proba-

bility of the particle being there must be zero which this loss function requires. Practically,

these integrals were calculated as the area of the domain multiplied by the average of a

set of uniformly distributed sample points of the domain.
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They were then combined into a holistic loss function on the form:

Loss = PDE Loss + w1 · Density Loss + w2 · Boundary Loss (16)

with w1, w2 ∈ R. This holistic function was the one used for back-propagation but, for

the sake of consistency, all losses were looked at independently and without weight when

evaluating the models.

2.2 Design Variations

Through the process of approximating the PDE, several hyper-parameters, algorithms,

and network architectures were experimented with. In regards to network architecture

both the typical feed-forward network and a LSTM network were tested. Additionally

hyperparameters like Betas, weight decay, and the learning rate were adjusted. Finally

learning rate annealing was tested.

When testing the features above, all other testing parameters were set to their default

values in PyTorch or disabled if that was an option.

2.3 Network Specifications

Unless it is the aspect being experimented with during training, this section describes spec-

ifications of all networks trained for this investigation. All networks, including LSTM and

feed-forward, used 3 hidden layers with 64 nodes each and tanh (x) as the activation func-

tion. The total number of points used was 214 = 16, 384 both on the domain and boundary.

The selected optimizer was AdamW with a learning rate of 10−2 and an on-plateau learning

rate scheduler with a patience of 200 epochs and a factor of 0.9. For the specifics of imple-

mentation https://github.com/HolgerMolin/Rays_QSD_Approximation.git contains

the code used for this project.
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2.4 Benchmarking

When evaluating the models against one another, the unweighted loss functions were

considered and optimized against. Then, to verify the effectiveness of the proposed model,

a Fleming-Viot simulation of the system was created. The model’s predicted probability

distribution was then compared to the result of Fleming-Viot simulation to ensure that

the loss functions’ outputs actually actually correspond to real errors and to determine

how precisely how accurate the model was.

3 Results

Figure 6: The PINN output. Here, x and y are spacial coordinates z is the probability
density associated with each point.

Network Output Figure 6 shows an approximate solution of the probability density

function associated with Equation (13) and Figure 7 shows its corresponding Fleming-Viot

simulation.
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Figure 7: Fleming-Viot simulation output. Once again, x and y represent coordinates in
a two-dimensional space and z is the probability density of each point.

Learning Rate Annealing In the two dimensional case, learning rate annealing posi-

tively impacts the speed of convergence significantly but this comes at the cost of accuracy

as the converged error is 80% higher. It should, however, be noted that this error is signif-

icantly less than in the one dimensional case where the NN with learning rate annealing

enabled had an error approximately 208% higher than the one without.

Figure 8: Holistic loss over 8000 epochs of learning with and without learning rate an-
nealing enabled. α = 0.9 was used when using learning rate annealing.

Weight Decay The introduction of weight decay had a negligible impact on accuracy

but reduced the number of iterations required to converge by about 1000.
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Figure 9: Holistic loss over 8000 iterations of learning with and without weight decay
enabled.

Figure 10: Loss sum over 10000 epochs of learning with and without betas enabled.

Betas Specifying betas to (0.99. 0.99) as recommended by [20] resulted in the PINN

converging after around 1500 iterations instead of 10000 and an 23% improvement in loss.

Figure 11: Comparison of summed losses between an FFNN and an LSTM architecture
o.
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Network Architectures The FFNN was slightly more stable during training than the

LSTM but the final loss only differed by 3% in favor of the FFNN and the number of

epochs for convergence differed marginally.

4 Discussion

When compared to the Fleming-Viot simulation, the average output difference at the

evaluated points was 0.0526 which, while far from optimal, is enough that the output can

be considered significant given the range is between 0 and 1.5 and, thus, has a margin of

error around 3%.

When compared to the Fleming-Viot simulation, the average output difference at the

center of each histogram bucket was 0.0526 which, while not perfect, represents an error

of only about 3% as the range varies between 0 and 1.5. It should be noted that this

error may very well be lower but the Fleming-Viot simulation is quite slow and obtaining

fully converged model without outliers that bring the average error up has been difficult,

pointing to machine learning methods as a viable alternative to Fleming-Viot. Similarly,

the difference in graph appearance can be explained by the fact that modeling with high

resolution, especially around the border where the gradient is higher and the points are

more spread out, is outside of the scope of this article.

4.1 Learning Rate Annealing

On the tested QSD, learning rate annealing had a clear, negative impact on the loss

function. Though this has yet to be tested, it could be worthwhile investigating further

how learning rate annealing functions with higher dimensional SDEs and if the increased

complexity makes annealing more useful. This is supported by the fact that when im-

plementing learning rate annealing in the one dimensional case, the error is greater by a

factor of 2.5
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4.2 Network Architecture

The convergence of the FFNN was marginally better than that of the LSTM and the

difference in converged loss was small enough that it can not be considered significant.

Therefore, it can be concluded that, for the purpose of modeling relatively simple QSDs,

the FFNN and LSTM are equally effective for loss optimization.

4.3 Betas

By changing betas from its default of β1 = 0.9, β2 = 0.999 to β1 = 0.99, β2 = 0.99,

convergence was reached significantly sooner. As stated in the introduction, these values

determine what number of previous iterations to keep a moving average of. The resulting

loss change was somewhat small but the number of iterations needed for convergence

decreased by a factor of five. For the two-dimensional case, this is not major but for

higher dimensional cases where computational complexity becomes a limiting factor, this

could be the difference between feasibly being able to approximate a QSD and not.

4.4 Conclusion and Further Studies

Based on the results from this study, some recommendations for future PINN modelling

can be made. Regarding β1 and β2, it is clear that small alterations can have major impacts

on performance. As default parameters, β1 = 0.99, β2 = 0.99 are suggested but further

optimization should be made on a project-specific basis. Weight decay is also suggested

for improved convergence. 0.001 worked quite well for this project but experimentation is

advised.

Learning rate annealing is not recommended for simple problems such as the one

investigated here but a more thorough investigation into its effectiveness in higher di-

mensional PDEs with more complex behaviour could yield useful results. Similarly, it is

unclear whether LSTM is better or worse than the standard feed-forward method meaning

that further investigations on a wider array of SDEs should be conducted to give clearer

results.
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